ADJ網路實驗室
打印

日本物理學家堀田昌寛的量子能量遠距傳輸 (影片)

本主題被作者加入到個人文集中

日本物理學家堀田昌寛的量子能量遠距傳輸 (影片)

By Lisa Zyga, February 5, 2010

(PhysOrg.com) -- 利用使資訊遠距傳輸(teleportation)成為可能的相同量子原理,一項新提議證明那也許能夠傳送能量。利用糾結粒子(entangled particles)中的量子能量波動,物理學家也許夠將能量注入其中一個粒子,並從位於數光年之遙的另一個粒子將能量取出。這項提議或能導致能量散佈的新發展,對於量子資訊與量子能量之間的關係也能有更好的的理解。

東北大學(Tohoku University)的日本物理學家堀田昌寛(Masahiro Hotta)在一篇最近張貼在 arxiv.org 上,名叫「Energy-Entanglement Relation for Quantum Energy Teleportation(量子能量遠距傳輸的能量糾結關係)」的文章中解釋這種能量遠距傳輸方案。

先前,物理學家已證明如何遠距傳輸數種不同實體,包括光子、原子與離子的量子態。研究者預測遠距傳輸的原理也能擴展到分子、病毒與其他更複雜的物體。過去一年以來,物理學家也已經在探索量子能量遠距傳輸,而堀田的最新論文則建立在這些研究之上。

在量子能量遠距傳輸中,一位物理學家首先針對二糾結粒子的每一個進行測量。針對第一個粒子的測量會把量子能量注入這個有二個粒子的系統中 -- 那是有可能的,因為任一粒子的能量中總有量子波動。透過對第二個粒子進行仔細挑選的測量,能量接著可從第二個粒子那裡擷取出來。在整個過程中,系統整體能量仍維持不變。

如同先前遠距傳輸的例子,真實粒子並沒有被傳輸,因為在量子層次上,它們基本上完全一樣。相反的,它們所攜帶的資訊則很重要。基於這個緣故,物理學家可以只在粒子中傳送資訊,而非粒子本身。接收粒子接受來自傳送粒子的資訊,並呈現出與傳送粒子一模一樣的狀態。

堀田的論文標誌著「最小『量子能量遠距傳輸模型』種類之能量糾結關係」的第一個例子。一如他的解釋,這些發現能使科學家們探索物理學的基礎:尤其是,量子資訊與量子能量間的關係。

"這些量子糾結不等式(inequalities)很重要,使糾結與能量相關並成為一種實證的(evident)物理學資源,藉此,它們在協助獲得深刻的糾結理解上,本身也成了一種物理學資源," 他寫道。

如同 MIT Technology Review 一篇報導的解釋,這些關於糾結與資訊的新構想可能有深遠的影響:"這裡有種發展中的觀念,最能描述宇宙特性的並非那些統治事物的定律,而是那些主宰資訊的法則。這對量子世界而言顯然為真,對於狹義相對論而言必定為真,而目前正為了廣義相對論來進行探索。有某種方法在相同的立足點上處理能量,或能協助將這些互異的標準兜在一起。"

Physicist proposes method to teleport energy
http://www.physorg.com/news184597481.html

(PhysOrg.com) -- Using the same quantum principles that enable the teleportation of information, a new proposal shows how it may be possible to teleport energy. By exploiting the quantum energy fluctuations in entangled particles, physicists may be able to inject energy in one particle, and extract it in another particle located light-years away. The proposal could lead to new developments in energy distribution, as well as a better understanding of the relationship between quantum information and quantum energy.

Japanese physicist Masahiro Hotta of Tohoku University has explained the energy teleportation scheme in a recent study posted at arxiv.org, called “Energy-Entanglement Relation for Quantum Energy Teleportation.”

Previously, physicists have demonstrated how to teleport the quantum states of several different entities, including photons, atoms, and ions. Researchers predict that the principles of teleportation could also extend to molecules, viruses, and other more complex objects. Over the past year, physicists have also been exploring quantum energy teleportation, and Hotta’s latest paper builds on these studies.

In quantum energy teleportation, a physicist first makes a measurement on each of two entangled particles. The measurement on the first particle injects quantum energy into the two-particle system, which is possible because there are always quantum fluctuations in the energy of any particle. This energy can then be immediately extracted at the second particle by making a second carefully chosen measurement on that particle. Throughout the process, the energy of the overall system remains the same.

As in previous examples of teleportation, the actual particles aren’t teleported since they’re basically identical at the quantum level. Rather, the information they carry is the important part. For this reason, physicists can simply send the information within a particle and not the particle itself. A receiving particle accepts the information from a sending particle, taking on the identity of the sending particle.

Hotta’s paper marks the first example of the energy-entanglement relation for the smallest kind of quantum energy teleportation model. As he explains, the findings could enable scientists to explore the foundations of physics: specifically, the relationship between quantum information and quantum energy.

“These energy-entanglement inequalities are of importance because they help in gaining a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource,” he writes.

As a story in MIT’s Technology Review explains, these new ideas about entanglement and information could have far-reaching implications: “There is a growing sense that the properties of the universe are best described not by the laws that govern matter but by the laws that govern information. This appears to be true for the quantum world, is certainly true for special relativity, and is currently being explored for general relativity. Having a way to handle energy on the same footing may help to draw these diverse strands together.”


More information: Masahiro Hotta. "Energy-Entanglement Relation for Quantum Energy Teleportation." arxiv.org

via: Technology Review


© 2010 PhysOrg.com


---------

量子力學基礎教學影片:
量子力學基礎教學





TOP

ARTERY.cn